728x90

Paper Review/Text Generation 3

[2022] Partner Personas Generation for Dialogue Response Generation

[2022] Partner Personas Generation for Dialogue Response Generation Hongyuan Lu, Wai Lam, Hong Cheng, Helen M. Meng 본문의 논문은 NAACL 2022 Accepted paper로, 여기를 확인해주세요. Abstract 페르소나를 정보로 통합하는 것은 대화 응답 생성에서 다양하고 매력적인 응답을 가능하게 한다. 이전 연구들은 주로 self 페르소나에 초점을 두었고, 파트너의 페르소나의 가치를 간과했다. 게다가 실제 적용에서, gold 파트너 페르소나의 가용성은 종종 그렇지 않다. 본 논문은 성공적인 대화 응답 생성을 강화하기 위해 자동 파트너 페르소나 생성에 영향을 준 새로운 프레임워크를 제공함으로써 이 이슈들을 해..

[2022] Generating Repetitions with Appropriate Repeated Words

[2022] Generating Repetitions with Appropriate Repeated Words Toshiki Kawamoto, Hidetaka Kamigaito, Kotaro Funakoshi and Manabu Okumura 본문의 논문은 NAACL 2022 Accepted paper로, 여기를 확인해주세요. Abstract 반복은 대화에서 사람들의 말을 번복하는 것이다. 이런 반복은 언어학적인 연구에 큰 비중을 차지하는데, 저자들은 이 반복 생성에 주목하였다. 저자들은 Weighted Label Smoothing을 제안하는데, 이는 fine-tuning 단계에서 반복할 단어를 명시적으로 학습하기 위한 smoothing 방법이고, 디코딩 중 더 적절한 반복을 출력할 수 있는 반복 스코어..

[2022] Learning to Transfer Prompts for Text Generation

[2022] Learning to Transfer Prompts for Text Generation Junyi Li, Tianyi Tang , Jian-Yun Nie , Ji-Rong Wen and Wayne Xin Zhao 본문의 논문은 NAACL 2022 Accepted paper로, 여기를 확인해주세요. Abstract PLM (Pretrained Languaged Model)은 fine-tuning을 통해 text generation에서 주목할만한 진전이 있었다. 그렇지만, 데이터가 부족한 상황에서는 PLM을 fine-tuning 하는 것이 어려웠다. 이를 해결하기 위해서 가벼운 모델을 만드는 것은 그리 쉽지 않은 부분이고, 이를 위해 최근에는 prompt-based 가 잠재적인 해결책을 주었다...

728x90
반응형