728x90

Paper Review/Recommendation 5

[2021] Revisiting the Performance of iALS on Item Recommendation Benchmarks

[2021] Revisiting the Performance of iALS on Item Recommendation Benchmarks Steffen Rendle, Walid Krichene, Li Zhang, Yehuda Koren 본문의 논문은 ACM RecSys paper로, 링크를 확인해 주세요. Abtract google에서 낸 논문으로, 추천 시스템의 트릭을 발견하여 조금 더 잘 적용해보았다고 한다. 기존의 SOTA모델과 경쟁이 될 정도로 성능이 좋은 편은 아니지만, 기존의 것을 사용한 update된 논문 정도로 생각하면 좋을 듯하다. Introduction iALS (implicit Alternating Least Square)는 implicit 피드백을 통해 top-n 아이템 추천을 목적으..

DeepFM : A Factorization-Machine based Neural Network for CTR Prediction

[2017] DeepFM : A Factorization-Machine based Neural Network for CTR Prediction Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He 본문의 논문은 링크를 확인해 주세요. Introduction CTR (Click-Through Rate) · 추천된 아이템을 유저가 클릭할 확률을 뜻한다. · 대부분의 추천 시스템은 이 확률의 최대화를 목표로 한다. CTR 예측을 위한 user의 implicit feature interaction 예시) · 유저들의 식사 시간(시간)에 음식 배달 앱(앱 종류)을 자주 다운로드 한다. → CTR 신호 : 시간과 앱 종류 사이의 order-2 interac..

FM (Factorization Machine)

추천 시스템에서 기반이 되는 Factorization 에 대해 간략히 정리하고자 한다. MF (Matrix Factorizatoin) Matrix Factorization은 가장 대중적인 Latent Factor model로, SVD(Singular Value Decomposition)과 유사하게 유저와 아이템을 $f$차원의 latent factor space로 매핑한다. $f$개의 latent factor 로 표현된 user, item vector $\mathbf{p}_u, \mathbf{q}_i$의 내적으로 둘 사이의 interaction $\hat{\mathbf{r}}_{ui}$를 다음과 같이 구한다. $\hat{\mathbf{r}}_{ui} = \mathbf{p}_u \mathbf{q}_i$ Fa..

Neural Collaborative Filtering (NCF)

[2017] Neural Collaborative Filtering Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, Tat-Seng Chua 본문의 논문은 ICER paper로, 링크를 확인해 주세요. Introduction 추천 시스템은 이전에도 궁금하여 다루어 보았던 내용으로, collaborative filtering기법에서 가장 대표적으로 많이 사용되는 matrix factorization (MF)이 있다. 이는 유저 또는 아이템의 잠재적 특성을 가진 벡터를 사용하여 곱하여 계산하는 방식이다. 즉, 아이템에 대한 사용자의 상호작용을 내적을 이용하여 모델링한 것이다. 추천 시스템에 적용되는 가장 유명한 것으로 넷플릭스를 뽑을 수 있다. 이는..

[2021] "Serving Each User"- Supporting Different Eating Goals Through a Multi-List Recommender Interface

[2021] "Serving Each User"- Supporting Different Eating Goals Through a Multi-List Recommender Interface ALAIN D. STARKE, EDIS ASOTIC and CHRISTOPH TRATTNER 본문의 논문의 출처는 RecSys 2021로, 여기를 확인해주세요. Summary 유저들의 다양한 목적에 부합하는 multi-list 음식 추천 인터페이스를 제안한다. 저자들은 두 가지 인터페이스 (single vs multiple lists)의 방법을 노출했을 때 어떤 차이가 있는지 유저 스터디로 비교 분석하였다. 비록 multi-list 인터페이스가 single보다 덜 건강한 것을 선택하지만, 다양성과 선택의 만족성은 sin..

728x90
반응형